

Proposing A New Methodology For Weather Forecasting By Using Big Data Analytics

S. Saranya¹, T. Meyyappan²

¹Research Scholar, Department of Computer Science Alagappa University, Karaikudi, India ²Department of Computer Science Alagappa University, Karaikudi, India

ABSTRACT

Big data has described an enormous quantity of data which needs new technologies to make potential to obtain value from it by analysis and capturing method. Data Analytics often includes scrutinizing past traditional data to research potential trends. Weather prognostication has been one of the most fascinating and exciting domain, and it performs an essential role in aerography. The weather situation is the state of the atmosphere at a given time regarding weather variables like wind direction, rainfall, cloud conditions, pressure, temperature, thunderstorm, etc. The Big data obtained by NCDC (National Climatic Data Center) has received over more than 116 weather locations and more than 1000 observations centers. The data produced by them is unstructured which grows a challenging job to explain it. In this paper, these enormous amounts of data have loaded onto the Apache Pig, Hadoop Distributed File System, Apache Hive is to process the data, which utilizes mappers and reducers to process the data. The above dataset has explained by using given methods and the final output of this project in the form of maximum, minimum and average temperature according to the given time and date.

Keywords: Big Data, Hadoop, HDFS, MapReduce, Mapper, Reducer, Min, Max, Average, NCDC.

I. INTRODUCTION

Big Data is the method of analyzing large data sets comprising a class of data types [1]. The big data maintain a significant amount of data and process them. It is conventional data analysis which can handle the structured data, but not unstructured data. In big data, it can process both unstructured and structured data. Big data involves data sets typically with different dimensions beyond the ability of generally employed software tools to manage, capture, process and curate the data. Big data size varies from terabytes to several petabytes of data. Weather prognostication is the employment of technology to predict the behavior of the environment for a given area. It is essential for farmers, disasters, business agriculturist, etc. weather prediction is one of the

most exciting and fascinating domain and plays a significant role in aerography. There are numerous conditions in an excellent implementation of weather forecasting for example in data mining methods; it cannot forecast weather in short-term efficiently.

MIN and MAX temperature for each particular year, the graph is plotted for the visualization of the temperature. Based on the previous year data weather data of coming year is predicted.

II. MAPREDUCE PROGRAMMING

MapReduce application performs in three steps, namely map step, shuffle step, and reduce step. **Map stage**: The map or mapper's job is to process the input data. The input data is in the sort of file or directory and is collected in the Hadoop file system (HDFS) [4] [5]. The **Reduce task** takes the output from the Map as input and combines those data tuples (key-value pairs) into a smaller set of tuples.

III. DESCRIPTION OF THE DATASET

A dataset is a collection of portraits of the items or data objects in a data model for the advantage of programmers and others who need to refer to them. The following table 1 depicts the data dictionary used in this Weather Prediction.

Table 1. Data Dictionary used in the proposed
weather forecasting methodology

S.	COLUM	DATAT	CONSTR	DESCRIP
Ν	N NAME	YPE	AINTS	TION
0				
1	Country_	Integer	Allow	Get the
	id		null	country
				id
2	Country_	Varchar	Allow	Get the
	name		null	country
				name
3	State_id	Integer	Allow	Get the
			null	state id

4	State_	Varchar	Allow	Get the
	name		null	state
				name
5	District	Integer	Allow	Get the
	_id		null	district id
6	District_	Varchar	Allow	Get the
	name		null	district
				name
7	Area_id	Integer	Allow	Get the
			null	area id
8	Area_na	Varchar	Allow	Get the
	me		null	area
				name
9	Date	Date	Allow	Get the
			null	date
10	Time	Time	Allow	Required
		value	null	time
11	Seasons	Varchar	Allow	Get the
			null	required
				seasons
12	Maximu	Integer	Allow	Get the
	m		null	max temp
	temperat			
	ure			
13	Minimu	Integer	Allow	Get the
	m		null	mini
	temperat			temp
	ure			
	Average	Integer	Allow	Get the
14	temperat		null	avg temp
	ure			
15	Current	Integer	Allow	Get the
	temperat		null	cur temp
	ure			
16	Passed	Integer	Allow	Required
	temperat		null	data
	ure			
17	User_ id	Integer	Allow	Get the
			null	user id
18	User_na	Varchar	Allow	Get the
	me		null	username

S	Saranya et a	l. Int	JS	Res Sci.	Tech.	2018 1	May	June;4(8)	: 249-254	
	2						~			

	19	Em	ail_i	id	Var	char		Allov	V		Get	the
								null			mail i	id
	20	Pho	one_	n	Inte	eger		Allov	V		Get	the
		0						null			requi	red
											phon	e no
CA	_25-Jan-2	014	00:12:	345	15.7	01:19:3	345	23.1	02:34:	542	2 12.3	
	03:12:	187	16	04:00):093	-14	05	:12:345	35.7	06	5:19:345	23.1
	07:34:	542	12.3	08:12	:187	16	09	:00:093	-7	10):12:345	15.7
	11:19:	345	23.1	12:34	:542	-22.3	13	:12:187	16	14	1:00:093	-7
	15:12:	345	15.7	16:19	:345	23.1	19	:34:542	12.3	20):12:187	16
~	22:00:	093	-7						00.04			
CA	_26-Jan-2	107	00:54:	245	15.7	01:19:3	643	23.1	02:34:	542	2 12.3	00.1
	03:12:	18/	10	04:00	1093	-14	00	012:345	>>./ 7	10	0:19:345	25.1
	0/:34:	542 245	12.5	12:24	18/	10	12	12:193	-/	10	1:12:345	15.7
	15-12-	245	25.1 15.7	14.34	1.342 1-245	12.5	10	.14.16/	10	20	12.197	-/
	22:00:	002	7	10.15	.545	25.1	19	.54.542	12.5	20).12.107	10
CA	27 Ion 2	014	-/	045	25.7	01-10-2	2/14	22.1	02-34	541	222	
CA	03.12	187	16	04.00	0.093	-14	05	.12-345	35.7	06	5-10-345	23.1
	07:34	542	12.3	08:12	-187	16	00	00.093	-7	10):12:345	15.7
	11-19-	345	23.1	12:34	-542	12.3	13	12.187	16	14	1.00.093	-7
	15:12:	345	15.7	16:19	345	23.1	19	.34.542	12 3	20):12:187	16
	22:00	093	-7							_		
CA	28-Jan-2	014	00.22	315	15.7	01.19.3	344	23.1	02:34	542	2 12.3	
	03:12:	187	16	04:00	:093	-14	05	:12:345	35.7	06	5:19:345	23.1
	07:34	542	12.3	08:12	:187	16	09	:00:093	-7	10):12:345	15.7
	11:19	345	-23.3	12:34	:542	12.3	13	:12:187	16	14	1:00:093	-7
	15:12:	345	15.7	16:19	:345	23.1	19	:34:542	12.3	20):12:187	16
	22:00:	093	-7									
CA	29-Jan-2	014	00:15:	345	15.7	01:19:3	345	23.1	02:34:	542	2 52.9	
	03:12:	187	16	04:00	:093	-14	05	:12:345	45.0	06	5:19:345	23.1
	07:34:	542	-2.3	08:12	:187	16	09	:00:093	-7	10):12:345	15.7
	11:19:	345	23.1	12:34	:542	12.3	13	:12:187	16	14	1:00:093	-17
	15:12:	345	15.7	16:19	:345	23.1	19	:34:542	12.3	20):12:187	16
	22:00:	093	-7									
NJ	_29-Jan-20	14	00:15:	345	15.7	01:19:3	345	23.1	02:34:	542	2 52.9	
	03:12:	187	16	04:00	0:093	-14	05	:12:345	45.0	06	5:19:345	23.1
	07:34:	542	-2.3	08:12	:18/	16	09	200:093	-7	10):12:345	15.7
	15:19:	345	23.1	12:34	1:542	12.3	15	12:18/	10	14	12:193	-17
	22:00:	002	7	10.15	.545	25.1	19	.54.542	14.5	20).12.10/	10
CA	22.00. 20 Ion 2	095	-/	1.15	15.7	01-10-2		22.1	02-24-	541	122	
CA		187	56	04.00	15.7	-14	05	-12-345	35.7	04	5-10-345	30.6
	07:34	542	12.3	08.12	187	16	00	000.093	-7	10).12.345	157
	11-19-	345	23.1	12:34	-542	12.3	13	12:187	16	14	1.00.093	-7
	15:12	345	-15.7	16:19	:345	23.1	19	:34:542	12.3	20):12:187	16
	22:00	093	-7							_		
CA	31-Jan-2	014	00:42	245	15.7	01:19:3	345	23.1	02:34	542	2 12.3	
	03:12:	187	16	04:00):093	-14	05	:12:345	49.2	06	5:19:345	23.1
	07:34:	542	12.3	08:12	:187	16	09	:00:093	-7	10):12:345	15.7
	11:19:	345	23.1	12:34	:542	12.3	13	:12:187	16	14	1:00:093	-7

Figure 2. Sample Weather Prediction Dataset

IV. PROPOSED METHODOLOGY FOR WEATHER FORECASTING BY USING BIG DATA ANALYTICS

The following figure 2 depicts the proposed methodology for weather forecasting by using Big Data Analytics.

Figure 2. Proposed Methodology for Weather Forecasting by using Big Data Analytics

The forecast of the climate variance perpetually has shown very usefully and essential. In the United States of America (USA) there are typically many effects designed in different cities. These issues might involve the concerts, car racing, festivals, etc. As these are the open-air concerts, they experience a lot from the daily weather variations, which is rising because of global warming. To avoid these issues, they need to pre-plan and choose the data for their event in advance. It can work out only if they had any predictions of the climate data using the Hadoop and distributed system and map reduce. By using mapreduce and also calculate the maximum and the minimum temperature for the hot days and cold days. So, as a result, we can discover useful information about event planning, such as location, time and statistical data.

Maximum, Minimum and Average: In this step, to find out the maximum, minimum and average temperatures of the year, and able to predict the future weather forecast. Finally, to plot the graph for the obtained MAX, MIN and AVG temperature for each month of the particular year to visualize the temperature.

Comparisons: The overall accuracy percent is computed from the one to three years out accuracy

percentages for high temperature, low temperature, icon forecast precipitation and text forecast precipitation. Temperature accuracy is the percentage of estimates within three degrees. Precipitation accuracy is the percentage of correct forecasts. The forecasts have collected in the evening.

Seasons: This step used to Seasonal forecasting is the effort to present valuable information about the "weather climate" that has required in the following months. The periodical forecast is not a weather forecast. Weather can be examined as a snapshot of continually varying atmospheric situations, whereas climate has viewed as the statistical report of the weather phenomena happening in an assigned season.

Prediction: The forecast of the climate change perpetually has proven very important and useful. It can work out only if it had any estimates of the climate data using the Hadoop and distributed system and map reduce. By using map reduce and also calculate the maximum and the minimum temperature for the hot days and cold days. So, as a result, we can discover useful information about event planning, such as location, time and statistical data.

Weather Reports: This Module includes displaying the list of locations on the weather reports. It has visualized as a pictorial representation which has used to identify the past and current year of the temperature.

Weather Format: This Module includes Displaying the list of locations weather Forecast Details. It will be predicted based on the past minimum, maximum, average temperature of the particular year. A user can search specific location weather Forecast by giving the location name in this Module.

Reports: This application provides for generation of reports like total no of need (Min, Max and avg

temperature) available in the application weather forecast reports based on user requirements.

Proposed Algorithm for Weather Forecasting using MapReduce Programming

Input: Cleans Dataset for particular region/City, Prediction Dates, Prediction Attribute

Output: Prediction for a specific range and specified attribute.

Step1: Select all data from noisy data source, and verify

each.

While($i \neq \emptyset$)

If(verified(i)) Then weight(i) = 1

Else Weight(i) = 0

End While

Step1 Traverses the entire database and verifies the validity of each parameter if the parameter value is found noisy, zero weight has given to that record, and that record will not participate in the prediction process.

Step2:

PRED_DATE = sequence to be predicted

BASE_SEQ = (PRED_DATE) - (NO_OF_DAYS)

The algorithm divides the whole data into equal chunks called sequences where every sequence is equal to the prediction time span, i.e., if the prediction is for 1 Month, the 12-year dataset has divided into monthly chunks. It has expected for the distance calculation in the dataset.

Step 3:

While days ≠ Ø

Selected_days[] = DAY(day) of MONTH(month) (if Validated)

End While

Calculate Distance(Selected_days[])

SORT(Selected_days[], Distance)

This step performs the key operation of the algorithm. It selects the similar record from the whole dataset, i.e., if we need to predict the weather for the 1st week of Jan 2003, then this step will select all records of the 1st week of January from the whole dataset. Further it calculates its distance, and finally, it sorts the results according to distance.

Step4: Find the K nearest neighbor and calculate mean. The last step extracts K nearest neighbors from the array and takes its mean as the predicted value for a specific day.

Step5: The process stopped when all data has examined.

V. RESULT AND DISCUSSION

The following figure depicts the performance analysis of the k-nearest neighbor and fuzzy C-means in the weather forecasting. From the above table 2, the execution time of K-NN has reduced than the Fuzzy C-Means. The accuracy is increased by 92.86% in K-NN whereas in Fuzzy C -means it is only 57.14%.

Table 2. Comparison of the performance analysis ofFuzzy C-Means and K-Neared Neighbor in theWeather Forecasting

PARAMETERS	FUZZY C- MEANS	K-NEAREST NEIGHBOR
	ALGORITHM	ALGORITHM
Accuracy	57.14%	92.86%
Execution	30 seconds	11seconds
Time		

	×]1-Р	hoenbxSQL () as pr	athik D 	eas	ଅ ସାଜ ଜୋଷ ହ	8 [s ¹]s ¹	
1	Objects	sgi					
2 🗆		0.7	Numeric Functions String Functions Syste	m Functions Tir	ne/Date Functions Keyw	ords Supported Refactorings	
L L R	+ I Phoer	WKSQL	Metadata Statu		schemas	Table Types	Data Types
۵ ا	6 1 SY	STE PhoenixSQL	Property Name IDBC Driver CLASSNAME	org.apach	Value e.phoenix.jdbc.PhoenixDriv	rer	
	1		LDBC Driver CLASSPATH	/home/hds	iser/phoenix-4.8.2/phoenix	-4.8.2-H8ase-1.2	
			get user name	false			
			supportsSchemasInTableDefinitions	false			
			getDriverName	PhoenixEm	beddedDriver		
			getCatalogSeparator				
		storesMixedCaseidentifiers fals					
		storesUppercasedenthers true					
		supportsmultiplekesutsets	Channin				
			aetDatabaseProductVersion	4.9			
			aetDatabaseMaint/ersion	4.0			
			getidentifierQuoteString				
			supportsSchemasInDataManipulation	true			
			supportsStoredProcedures	false			
			supportsSavepoints	false			
			getCatalogTerm	Tenant			
57			getschematern	schema			
			supportsCatalogsinDataManisulation	false			
			supportsCatalogsinProcedureCalls	false			
			getResultSetHoldability	2			
2			alProceduresAreCallable	false			
			allTablesAreSelectable	true			
-			nulsAreSortedHigh	false			
2			Initiatesofteniow	1771.10			
MB	/Phoenix5QL						1 1

Figure 3. Description of the Dataset

Figure 4a. Screenshot of the Home Page of the Weather Prediction

N W-2717 E	
s	Country India v State Tambashi v District Orennal v
	Select Date 22 2 2016
	4asimum Minimum Average 6.5 28:.4 22:.7
	Graph
	Aaximum Average
3	Azaimum Misimum Average 5.5 25 22.3 Immer Season

Figure 4b. Screenshot of the Select date for the weather prediction

Figure 4c. Selecting the state from the given option for the weather prediction

Figure 4d. Calculate the minimum, maximum and average temperature of the state for the selected date for the weather forecasting

VI. CONCLUSION

The proposed methodology has analyzed from the past data and advanced weather prediction using big data environment. Hadoop with map reduces to analyze the sensor data, which has stored in the National Climatic Data Centre (NCDC) is an efficient solution. Map reduce is a framework for highly parallel and distributed systems across large dataset. By using map reduce with Hadoop helps in removing scalability bottleneck. This type of technology used to analyze large datasets has the potential for significant enhancement to the weather forecast. The query tools make the analytics much more comfortable by providing random access to Big Data. MapReduce is a framework for executing distributable algorithm across huge datasets are using a large number of computers. Using MapReduce with Hadoop, the weather data can be analyzed efficiently and also predict the future weather forecast, minimum and maximum temperature, hot days and cold days based on the data obtained from the NCDC. It helps for the people to preplanning for outdoor events based on the weather conditions.

VII. REFERENCES

[1]. N.Padmaja, Prof. T.Sudha, "Big Data Analytics With Long Range Plan To Process Large Data Sets," International Journal of Advanced Scientific Technologies, Engineering and Management Sciences, pp.87-90.

- [2]. Harshawardhan S. Bhosale, Prof. Devendra P. Gadekar, "A Review Paper on Big Data and Hadoop," International Journal of Scientific and Research Publications, Volume 4, Issue 10, October 2014, pp.1-7.
- [3]. National Climatic Data Center Data Documentation for Data Set 3260 (DSI-3260). ftp://ftp.ncdc.noaa.gov/pub/data/noaa/dsi3260.pdf.
- [4]. Pooja S.Honnutagi, "The Hadoop distributed file system," International Journal of Computer Science and Information Technologies, Vol. 5 (5), 2014, 6238-6243.
- [5]. Jimmy Lin and Chris Dyer, "Data-Intensive Text Processing with MapReduce," This is the preproduction manuscript of a book in the Morgan & Claypool Synthesis Lectures on Human Language Technologies. Anticipated publication date is mid-2010.